Geometry of Gyrogroups via Klein’s Approach

نویسندگان

چکیده

Using Klein's approach, geometry can be studied in terms of a space points and group transformations that space. This allows us to apply algebraic tools studying mathematical structures. In this article, we follow approach study the $(G, \mathcal{T})$, where $G$ is an abstract gyrogroup $\mathcal{T}$ appropriate containing all gyroautomorphisms $G$. We focus on $n$-transitivity gyrogroups also give few characterizations coset spaces minimally invariant sets. then prove collection open balls equal radius set \Gamma_m)$ for any normed $G$, $\Gamma_m$ suitable isometries

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyrogroups and Gyrovector Spaces and Hyperbolic Geometry

We show that the algebra of the group SL(2; C) naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. The superiority of the use of the gyrogroup formalism over the use of theSL(2; C) formalism for dealing with the Lorentz group in some cases is indicated by (i) the validity of gyrogroups and gyrovector spaces...

متن کامل

The Variable Geometry Approach to International

Negotiations among nations on policies to promote international economic integration have widened in recent years to cover new issues; for example, foreign direct investment rules, policies to promote competition, the international movement of labor, the environment and monetary union. In these negotiations, a consensus among the parties negotiating is usually lacking and many of these negotiat...

متن کامل

The Geometry of C60: A Rigorous Approach via Molecular Mechanics

Molecular Mechanics describes molecules as particle configurations interacting via classical potentials. These configurational energies usually consist of the sum of different phenomenological terms which are tailored to the description of specific bonding geometries. This approach is followed here to model the fullerene C60, an allotrope of carbon corresponding to a specific hollow spherical s...

متن کامل

Lagrange Geometry via Complex Lagrange Geometry

Asking that the metric of a complex Finsler space should be strong convex, Abate and Patrizio ([1]) associate to the real tangent bundle a real Finsler metric for which they analyze the relation between Cartan (real) connection of the obtained space and the real image of Chern-Finsler complex connection. Following the same ideas, in the present paper we shall deal with the more general case of ...

متن کامل

Geometry via Coherent States

It is shown how the coherent states permit to find different geometrical objects as the geodesics, the conjugate locus, the cut locus, the Calabi’s diastasis and its domain of definition, the Euler-Poincaré characteristic, the number of Borel-Morse cells, the Kodaira embedding theorem. 1 Coherent state manifold and coherent vector manifold In this talk the coherent states [] are presented as a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2022

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-022-02051-0